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We analytically study a one-dimensional compaction model in the glassy regime. Both correlation and
response functions are calculated exactly in the evolving dense and low tapping strength limit, where the
density relaxes in a 1/Infashion. The response and correlation functions turn out to be connected through a
nonequilibrium generalization of the fluctuation-dissipation theorem. The initial response in the average den-
sity to an increase in the tapping strength is shown to be negative, while on longer time scales it is shown to
be positive. On short time scales the fluctuation-dissipation theorem governs the relation between correlation
and response, and we show that such a relationship also exists for the slow degrees of freedom, albeit with a
different temperature. The model is further studied within the statistical theory proposed by Edwards and
co-workers, and the Edwards entropy is calculated in the large system limit. The fluctuations described by this
approach turn out to match the fluctuations as calculated through the dynamical consideration. We thus have an
instance where these ideas can be confirmed analytically in a non-mean-field model.
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Granular materials have had much experimental and the- The model can be seen as a minimal model of the bottom
oretical attention in recent years. They are intriguing as theyayer in a granular material compacting under tapping. It is
form an additional state of matter, fundamentally differentrelated to the continuum car-parking modi@] and consists
from gases, liquids, and solidi]. Specific for these systems of unit sized hard-core blocKgarticles positioned on a ring
is that the thermal energy of its constituents, i.e., the graingf lengthL. The blocks, which interact via hard-core repul-
is negligible compared to other relevant energy scales. Sinc&@ion, do a caged diffusion along the ring with diffusion con-
the thermal energy is negligible, there is no inherent mechas_tantD(F). The blocks are further able to evapgratg from the
nism that makes a granular system explore its phase spadéld at the rate¢(I') =exg ~f(I')]. To model tapping-induced
Any energy fed to such a system is quickly dissipated and ifliffusion and activated escape from the ring, one could, for
left unperturbed, the system becomes trapped in one of marfx@mple, choos®(I')«I" and f(I') = 1/I". When a gap of
metastable states with an essentially infinite lifetime. InSiZ€ larger than one opens up, we take it to be filled by a
many situations where these materials are handled or used §gndom deposition of a particle with the tapping-strength-
production, they are continuously fed energy through exterindependent rate,=O(I")>0. This is meant to reflect the
nal perturbations. As a result the system starts to explore thi@ct that the gravitational pull on the particles is independent
available phase space and macroscopic quantities, such @kthe tapping strength. These rules are summarized in Fig. 1.
the density, start to evolve. This situation has been experi>ince we are interested in the very slow dynamics exhibited
mentally examined2,3] through subjecting a container filled bY this model in the limit of a dense system subject to a weak
with a granular material to many taps of accelerafiomhe ~ t@pping, we consider the weak tapping strength limit, in
time between taps was large enough for the system to disgyvhich we demandconsistent with diffusion and activated
pate any excess energy, and settle into one of its many met§vyaporation
stable states between each tap. The relaxation of defsit
free-volume fractiohin these expperiments was well fitet!(ed byy rd[),D(N)/e<rg, TN\0, (1)
an inverse logarithmic form. In a different context we have

previOL_Jst[4,5] introduced a simple_ one-dim_ensio_nal_ model rates, and not their actual form, that plays a crucial role in
for W.h'Ch. we were able io analytlcqlly derive this Inverse determining the long time dynamics. The average time a gap
logarithmic relaxation. We here consider a robust generahza(—)]c size larger than one, stays larger than one, before it is

tion of the model, and obtain both response and correlatio I . A
functions through a direct dynamical approach. The systenglosed by diffusion, is proportional to D). The time it

is further investigated in the context of Edwards’s statistical
theory of granular compactiof6—8], and the result of the  pm)
two approaches are compared. -—

wheree is the free-length fraction. It is this ordering of the

re(T)

11T
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suming ergodicity onmy between deposition events, and us-
ing straightforward geometrical considerations. Ergodicity
between deposition events should hold in the dense limit
since the time between deposition events diverges, and thus
the diffusive motion has enough time to relax the system
between these events. For further technical details we refer to
[4,5,10. (The intermediate time regime, in which the system
ought to display spatial structures, is at present being inves-
tigated[11]). The connected two time density-density corre-
lation function has the form

A

4
To(€w €) W ley-1le

Lre)r(e,) 2L ’

with e=e€(t|€y,tp) and e, =¢€(t,,| €,to), Where e(t| ,t;) de-
notes the average free-length fraction on the ring at time
given the initial free-length fractiore, at time ty. In the

: abovet,, is the waiting time, and{e) ~ke?es/D(T") is the
=== portal: m — 1 average time between deposition events within a unit length
of the ring, given the free-length fraction Herek is a con-

FIG. 2. Diffusion on the hyperplane showing a few reflections algiant only dependent on the geometry of the hyperplanes. We
the boundary, corresponding to two blocks bouncing off each Otherhave further used

and an eventual escape and transfer to the hyperptatierough a
gap of size 1 opening up and then being filled with a block.

C(t,ty) =

0
0

reflecting boundary

o k \"1
Tn(EWIGO) = J dE ‘f‘(e) ~ ﬁ H{E\%’(n-‘-l)[l
takes to fill such a gap by a deposition event is proportional €w
to 1/ryq. Due to the above ordering of rates we see that in the +O(e,)]e"e — EMI[1 + O(eg) ]}

weak tapping limit all gaps that open up will eventually be . : . L
filled by a deposition. Therefore the effect on the long timeThus we see that the long time density-density correlation is

dynamics of any evaporation events is suppressed. Thus ' dteplendefntthnog%nly.of the e\;ap?rgt]oar] ?nd (;iet[))ozm?n. rates,
can use the effective rules Ut also of the difiusion constant. SIndete, &) by detini-
tion is the average time it takes the system to evolve from a
re=0, rg=o, D(I)is finite, free-length fractiorg, to a free-length fractior, we have an
) ) ) implicit relationship for the evolution of the free-length frac-
for the long time evolution of the system. This shows that agjgn
long as the different rates satisfyt), then the long time

dynamics is insensitive to the precise form of the evaporation Ti(e(t|eg o), €0) =t —to.

and deposition rates. Taking this limit amounts to completel . L . o
suppressing any fast processes, such as the evaporation éq- grough differentiating the above with respectlidt is an

block followed by a subsequent deposition of a block in thecasSy matter to calculate the response in density 1o a change

created gap. of the tapping strength starting at timg

In a different context we have previough,5] derived the de(t|eyty) D'(D)Ty(e €
exact form of the density-density correlation function in the xr(tty) =- ar = D) o
dense and low tapping strength limit for the specific choice €)
of D(I')<I" and f(I') < 1/T". This was done through a geo- €D'(I) €\’
metrical description of the problem, and we now extend the - D(I) 1- e exp(l/ey = 1le) |.

considerations to the present case, and include a calculation

of the response function of the slow degrees of freedom. Wén Fig. 3 we display the response as a function of time. Since

view the time evolution of the system between depositionve have both response and correlation functions we are in

events as a diffusion of the gajfbetween blockson the  Position to consider a possible extension of the equilibrium

hypersurface of constant density fluctuation-dissipation theorem to the nonequilibrium situa-
tion present in our model. A direct comparison of the

N asymptotic form for the response and connected correlation

m=1An| 2 Ap=L-N0<A,<1}, (2)  functions gives
n=1
_ 2D'(I), .
where Ay is a vector consisting of all thAl individual gap xr(tty) ~ W[C (t,t) = C(t,ty)].

sizes betweelN adjacent blocks. This is illustrated in Fig. 2

for the case of a ring with only three blocks. Asymptotic In an equilibrium system the fluctuation-dissipation theorem
(large system, low tapping strength, high densilynamic  states that the linear response and the correlation function
properties of the system can now be calculated through agfor intensive quantitiesare related through
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no gap is larger than one. A powder driven by well-separated
periodic taps will explore the phase space of metastable or

Xt ) blocked states, consistent with the external conditions. It is
then natural to define the entropy density in the thermody-
namic limit as

1 108 1016

1
=ty Seaw(€) = lim E'n Wi (e),
L—o

FIG. 3. The form(scale arbitrary of the response function of
the slow degrees of freedomy(t,t,), as a function oft-t,, and
with a initial free-length fraction at,, €,=0.05. Similar response
functions have previously been found[it2,13.

where W, (e) is the number of blocked microscopic states

consistent with the free-length fraction We will refer to

Seqw @S the Edwards entropy density. In analogy with equi-

librium statistical mechanics one assumes that any of the

states consistent with the macroscopic constraitsdL are

_ Oty _ vV ICHt L) equally probable. With this crucial assumption the statistical
Aty T T properties of the system are given by the microcanonical

eq ” .
. . . ) ) partition function
whereV is the system size arfais the variable conjugate to

the quantity considered. In our case the corresponding state- Z(e,L) = exdLseau(e)]-

ment is If we consider our original system as being part of a larger
ensemble that allows exchange of particles between its sub-
C, ’
_ M _ LM, o= M systems, then we can move over to the canonical ensemble.
Ity Theq Itw 4 2D We define the canonical partition function for the free-length

. . . fraction by
whereh(I') is the (unknown variable conjugate to the den-

sity. It should be noted that in our asymptotic analysis we _ ' _ _

have nowhere demanded thatt,, but just thatt-t, is Q(“'L)_fo de expl~LLpe = Scan(e) ]},

larger than the relaxation time of the fast degrees of freedom,

tse Thus the above results are valid as longtg@st, and ~ Whereu is a Lagrangian multiplier ensuring the correct over-

t—ty>te Therefore, Toeq could, in general, depend on all free length. In the thermodynamic limit we can use the

some finite combination af andt,, in the limitt,—. Itis  Saddle-point method to introduce the thermodynamic poten-
thus striking thafl,eqis completely independent ofandt,,. tial

The temperature of the fast degrees of freedom can be di- 1

rectly calculated[10] through the fluctuation-dissipation f(u) == lim=In Q(u,L) = we(p) = Sequl (),

theorem asT.,=h'/f’, and thereforeTyy/ Tpeq=2D'/(DF). L—eL

Thus, depending on which timg scales we are considering,vheref(ﬂ) solvesd Sgqu(€(i)) = 1. In the usual manner we
we see different dynamically defined temperatures. This vergan now calculate the average free-length fraction as a func-
behavior has previously been identified in mean-field modelgion of 4, (€),=d,f(u)=€(w). Through the assumption that
[14] and through numerical simulatiof5-17, and now we 4| nossible states have priori equal probability we have

see it analytically in a non-mean-field model. For any reas; with respect to the calculation of the steady state, been
sonable system we hai® >0 andf’ <0, and thus the two  gpje to cut out any reference to the dynamics and replace it
temperatures differ in sigriwhich has not been seen in ity 5 statistical description using the thermodynamic vari-
mean-field models This sign difference arises because ongpje 4, conjugate to the free-length fraction. In our present
the short time scale an increase in tapping strength decomgyting thea priori equal probability is just the earlier used
pactifies the system through the fast degrees of freedom CORsumption of ergodicity omr, which should hold true in
sidered above. In the aging regime though, a higher tapping,e gense limit. The Edwards entropy for the compaction

strength increases the compactification rate. This behavigfggel considered can then simply be expressed as
has previously been seen in systems with activated dynam-

ics, such as the trap modgelee[18] and references thergin
We will later compare these results with those from consid-
ering the Edwards entropy of the system, which we derive

1
Seawl€) = L“m E'n V(T (1-¢) -

next. where V(m ;-¢) is the volume of the hypersurface ;-
We will use the simplest form of this theory and apply it defined in(2). Asymptotic analysi$5,10] gives
to our model, and for the omitted technical details we refer to Sean(©) = — 9(e,5(€))

[5,10]. A similar treatment has recently been carried out for
the parking-lot mod€]19], and similar results for the simpler
case when one allows gaps of size larger then one has been
known for a long timg20]. The counting of the number of wheres(e) solvesdig(e,s(€))=0. Moving over to the canoni-
blocked configurations is central to the Edwards approachcal ensemble we need to solues d.Sgqu(€( ) for the aver-
and in our case these correspond to configurations for whichge free-length fractiofe) ,=€(u) as a function of the ther-

d(e,s) =2es— (1 —¢€)(Insinhs—-Ins+59), (3)
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modynamic variableu. In the low tapping strength, high interpretl’ as a temperature for the slow degrees of freedom.
density, and large system limit this can be calculated as In this paper we have presented an instance where an
Seanl©) ~ (L - O[1 - In(e L= 1)] asympt_oticallly _exa_ct caIcuIatiop gives an e>_<t.en.sion of.the
fluctuation-dissipation theorem in the nonequilibrium regime
and thuse(u) = [1+O(x "IN w)]. The density fluctuations  of a granular compaction model. The results are very robust
can be written as with respect to the different types of driving, with only the
1 &(w) relation(1) setting the limits for the possible forms. Through
L2 L the fluctuation-dissipation theorem it is possible to define
K two different temperatures, one for the fast and one for the
which should be compared with the fluctuations of the slowslow degrees of freedom. Due to the difference in the re-
degrees of freedonG(t,t) ~ €2/2L, as given by the dynami- sponse to a perturbation in the tapping strength of the short
cal considerations above. Though different in origin theytime and long time degrees of freedom, these temperatures
agree in their functional dependence ©rResults with simi-  have a different sign. We have further treated the model with
lar implications have previously been reported in numericathe Edwards theory of powders and calculated an efiaet
simulations of compaction mode]$7,21,23. plicit) form of the Edwards entropy density. The fluctuations
Lastly we note that in a steady state the free-length fracas calculated within the Edwards’s picture further accurately
tion, &(I'), is set by the condition that the effective evapora-gescribe the long-time dynamically induced fluctuations.
tion rate for a typical configuration matches the deposition
rate into gaps opened by diffusion, The authors gratefully acknowledge Juan P. Garrahan.
_ _ _ This work was supported by EPSRC under the Oxford Con-
expl= [f(I) + ra*(1)/D(1) ]} ~ expl— 1/e(I)]. densed Matter Theory Grants No. GR/R83712/01 and GR/
For the natural choicé(I")=1/kl’, andD(I") < I', this gives  M04426 M.D. gratefully acknowledges support from Merton
e(I") ~kI', which compared te(u), as given by the Edwards College Oxford Domus and the Royal Swedish Academy of
picture, givesu~ 1/kI". Thus, in this setting it is natural to Science.
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