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We analytically study a one-dimensional compaction model in the glassy regime. Both correlation and
response functions are calculated exactly in the evolving dense and low tapping strength limit, where the
density relaxes in a 1/ lnt fashion. The response and correlation functions turn out to be connected through a
nonequilibrium generalization of the fluctuation-dissipation theorem. The initial response in the average den-
sity to an increase in the tapping strength is shown to be negative, while on longer time scales it is shown to
be positive. On short time scales the fluctuation-dissipation theorem governs the relation between correlation
and response, and we show that such a relationship also exists for the slow degrees of freedom, albeit with a
different temperature. The model is further studied within the statistical theory proposed by Edwards and
co-workers, and the Edwards entropy is calculated in the large system limit. The fluctuations described by this
approach turn out to match the fluctuations as calculated through the dynamical consideration. We thus have an
instance where these ideas can be confirmed analytically in a non-mean-field model.
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Granular materials have had much experimental and the-
oretical attention in recent years. They are intriguing as they
form an additional state of matter, fundamentally different
from gases, liquids, and solidsf1g. Specific for these systems
is that the thermal energy of its constituents, i.e., the grains,
is negligible compared to other relevant energy scales. Since
the thermal energy is negligible, there is no inherent mecha-
nism that makes a granular system explore its phase space.
Any energy fed to such a system is quickly dissipated and if
left unperturbed, the system becomes trapped in one of many
metastable states with an essentially infinite lifetime. In
many situations where these materials are handled or used in
production, they are continuously fed energy through exter-
nal perturbations. As a result the system starts to explore the
available phase space and macroscopic quantities, such as
the density, start to evolve. This situation has been experi-
mentally examinedf2,3g through subjecting a container filled
with a granular material to many taps of accelerationG. The
time between taps was large enough for the system to dissi-
pate any excess energy, and settle into one of its many meta-
stable states between each tap. The relaxation of densitysor
free-volume fractiond in these experiments was well fitted by
an inverse logarithmic form. In a different context we have
previouslyf4,5g introduced a simple one-dimensional model
for which we were able to analytically derive this inverse
logarithmic relaxation. We here consider a robust generaliza-
tion of the model, and obtain both response and correlation
functions through a direct dynamical approach. The system
is further investigated in the context of Edwards’s statistical
theory of granular compactionf6–8g, and the result of the
two approaches are compared.

The model can be seen as a minimal model of the bottom
layer in a granular material compacting under tapping. It is
related to the continuum car-parking modelf9g and consists
of unit sized hard-core blockssparticlesd positioned on a ring
of lengthL. The blocks, which interact via hard-core repul-
sion, do a caged diffusion along the ring with diffusion con-
stantDsGd. The blocks are further able to evaporate from the
ring at the rateresGd=expf−fsGdg. To model tapping-induced
diffusion and activated escape from the ring, one could, for
example, chooseDsGd~G and fsGd~1/G. When a gap of
size larger than one opens up, we take it to be filled by a
random deposition of a particle with the tapping-strength-
independent raterd=OsG0d.0. This is meant to reflect the
fact that the gravitational pull on the particles is independent
of the tapping strength. These rules are summarized in Fig. 1.
Since we are interested in the very slow dynamics exhibited
by this model in the limit of a dense system subject to a weak
tapping, we consider the weak tapping strength limit, in
which we demandsconsistent with diffusion and activated
evaporationd

resGd,DsGd/e2 ! rd, G ↘ 0, s1d

wheree is the free-length fraction. It is this ordering of the
rates, and not their actual form, that plays a crucial role in
determining the long time dynamics. The average time a gap
of size larger than one, stays larger than one, before it is
closed by diffusion, is proportional to 1/DsGd. The time it
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FIG. 1. Schematic representation of the model with dynamical
rules indicated.
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takes to fill such a gap by a deposition event is proportional
to 1/rd. Due to the above ordering of rates we see that in the
weak tapping limit all gaps that open up will eventually be
filled by a deposition. Therefore the effect on the long time
dynamics of any evaporation events is suppressed. Thus we
can use the effective rules

re = 0, rd = `, DsGdis finite,

for the long time evolution of the system. This shows that as
long as the different rates satisfys1d, then the long time
dynamics is insensitive to the precise form of the evaporation
and deposition rates. Taking this limit amounts to completely
suppressing any fast processes, such as the evaporation of a
block followed by a subsequent deposition of a block in the
created gap.

In a different context we have previouslyf4,5g derived the
exact form of the density-density correlation function in the
dense and low tapping strength limit for the specific choice
of DsGd~G and fsGd~1/G. This was done through a geo-
metrical description of the problem, and we now extend the
considerations to the present case, and include a calculation
of the response function of the slow degrees of freedom. We
view the time evolution of the system between deposition
events as a diffusion of the gapssbetween blocksd on the
hypersurface of constant density

pN =HD̄NUo
n=1

N

uDn = L − N,0 ø Dn , 1j , s2d

whereD̄N is a vector consisting of all theN individual gap
sizes betweenN adjacent blocks. This is illustrated in Fig. 2
for the case of a ring with only three blocks. Asymptotic
slarge system, low tapping strength, high densityd dynamic
properties of the system can now be calculated through as-

suming ergodicity onpN between deposition events, and us-
ing straightforward geometrical considerations. Ergodicity
between deposition events should hold in the dense limit
since the time between deposition events diverges, and thus
the diffusive motion has enough time to relax the system
between these events. For further technical details we refer to
f4,5,10g. sThe intermediate time regime, in which the system
ought to display spatial structures, is at present being inves-
tigatedf11gd. The connected two time density-density corre-
lation function has the form

Ccst,twd =
T2sew,e0d

Ltsedtsewd
,

ew
4

2Le2e1/ew−1/e,

with e=est ue0,t0d and ew=estw ue0,t0d, whereest ue0,t0d de-
notes the average free-length fraction on the ring at timet,
given the initial free-length fractione0 at time t0. In the
abovetw is the waiting time, andtsed,ke2e1/e /DsGd is the
average time between deposition events within a unit length
of the ring, given the free-length fractione. Herek is a con-
stant only dependent on the geometry of the hyperplanes. We
have further used

Tnsew,e0d =E
ew

e0

de tnsed , S k

DsGd
Dn1

n
hew

2sn+1df1

+ Osewdgen/ew − e0
2sn+1df1 + Ose0dgen/e0j.

Thus we see that the long time density-density correlation is
independent not only of the evaporation and deposition rates,
but also of the diffusion constant. SinceT1se ,e0d by defini-
tion is the average time it takes the system to evolve from a
free-length fractione0 to a free-length fractione, we have an
implicit relationship for the evolution of the free-length frac-
tion

T1„estue0,t0d,e0… = t − t0.

Through differentiating the above with respect toG it is an
easy matter to calculate the response in density to a change
of the tapping strength starting at timetw

xGst,twd = −
]estuew,twd

]G
=

D8sGdT1se,ewd
DsGdtsed

,
e2D8sGd

DsGd F1 −S ew

e
D4

exps1/ew − 1/edG .

In Fig. 3 we display the response as a function of time. Since
we have both response and correlation functions we are in
position to consider a possible extension of the equilibrium
fluctuation-dissipation theorem to the nonequilibrium situa-
tion present in our model. A direct comparison of the
asymptotic form for the response and connected correlation
functions gives

xGst,twd ,
2LD8sGd

DsGd
fCcst,td − Ccst,twdg.

In an equilibrium system the fluctuation-dissipation theorem
states that the linear response and the correlation function
sfor intensive quantitiesd are related through

FIG. 2. Diffusion on the hyperplane showing a few reflections at
the boundary, corresponding to two blocks bouncing off each other,
and an eventual escape and transfer to the hyperplanep4 through a
gap of size 1 opening up and then being filled with a block.
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−
]xhst,twd

]tw
=

V

Teq

]Ccst,twd
]tw

,

whereV is the system size andh is the variable conjugate to
the quantity considered. In our case the corresponding state-
ment is

−
]xhst,twd

]tw
,

L

Tneq

]Ccst,twd
]tw

, Tneq=
h8sGdDsGd

2D8sGd
,

wherehsGd is the sunknownd variable conjugate to the den-
sity. It should be noted that in our asymptotic analysis we
have nowhere demanded thatt@ tw, but just thatt− tw is
larger than the relaxation time of the fast degrees of freedom,
tfast. Thus the above results are valid as long astw@ t0 and
t− tw@ tfast. Therefore,Tneq could, in general, depend on
some finite combination oft and tw in the limit tw→`. It is
thus striking thatTneq is completely independent oft and tw.
The temperature of the fast degrees of freedom can be di-
rectly calculated f10g through the fluctuation-dissipation
theorem asTeq=h8 / f8, and thereforeTeq/Tneq=2D8 / sDf8d.
Thus, depending on which time scales we are considering,
we see different dynamically defined temperatures. This very
behavior has previously been identified in mean-field models
f14g and through numerical simulationsf15–17g, and now we
see it analytically in a non-mean-field model. For any rea-
sonable system we haveD8.0 and f8,0, and thus the two
temperatures differ in signswhich has not been seen in
mean-field modelsd. This sign difference arises because on
the short time scale an increase in tapping strength decom-
pactifies the system through the fast degrees of freedom con-
sidered above. In the aging regime though, a higher tapping
strength increases the compactification rate. This behavior
has previously been seen in systems with activated dynam-
ics, such as the trap modelsseef18g and references thereind.
We will later compare these results with those from consid-
ering the Edwards entropy of the system, which we derive
next.

We will use the simplest form of this theory and apply it
to our model, and for the omitted technical details we refer to
f5,10g. A similar treatment has recently been carried out for
the parking-lot modelf19g, and similar results for the simpler
case when one allows gaps of size larger then one has been
known for a long timef20g. The counting of the number of
blockedconfigurations is central to the Edwards approach,
and in our case these correspond to configurations for which

no gap is larger than one. A powder driven by well-separated
periodic taps will explore the phase space of metastable or
blocked states, consistent with the external conditions. It is
then natural to define the entropy density in the thermody-
namic limit as

sEdwsed = lim
L→`

1

L
ln WLsed,

where WLsed is the number of blocked microscopic states
consistent with the free-length fractione. We will refer to
sEdw as the Edwards entropy density. In analogy with equi-
librium statistical mechanics one assumes that any of the
states consistent with the macroscopic constraintse andL are
equally probable. With this crucial assumption the statistical
properties of the system are given by the microcanonical
partition function

Zse,Ld = expfLsEdwsedg.

If we consider our original system as being part of a larger
ensemble that allows exchange of particles between its sub-
systems, then we can move over to the canonical ensemble.
We define the canonical partition function for the free-length
fraction by

Vsm,Ld =E
0

1

de exph− Lfme − sEdwsedgj,

wherem is a Lagrangian multiplier ensuring the correct over-
all free length. In the thermodynamic limit we can use the
saddle-point method to introduce the thermodynamic poten-
tial

fsmd = − lim
L→`

1

L
ln Vsm,Ld = mesmd − sEdw„esmd…,

whereesmd solves]esEdw(esmd)=m. In the usual manner we
can now calculate the average free-length fraction as a func-
tion of m, kelm=]mfsmd=esmd. Through the assumption that
all possible states havea priori equal probability we have
thus, with respect to the calculation of the steady state, been
able to cut out any reference to the dynamics and replace it
with a statistical description using the thermodynamic vari-
able m conjugate to the free-length fraction. In our present
setting thea priori equal probability is just the earlier used
assumption of ergodicity onpN, which should hold true in
the dense limit. The Edwards entropy for the compaction
model considered can then simply be expressed as

sEdwsed = lim
L→`

1

L
ln VspLs1−edd.

whereVspLs1−edd is the volume of the hypersurfacepLs1−ed
defined ins2d. Asymptotic analysisf5,10g gives

sEdwsed = − g„e,ssed…

gse,sd = 2es− s1 − edsln sinhs− ln s+ sd, s3d

wheressed solves]sg(e ,ssed)=0. Moving over to the canoni-
cal ensemble we need to solvem=]esEdw(esmd) for the aver-
age free-length fractionkelm=esmd as a function of the ther-

FIG. 3. The formsscale arbitraryd of the response function of
the slow degrees of freedom,xGst ,twd, as a function oft− tw, and
with a initial free-length fraction attw, ew=0.05. Similar response
functions have previously been found inf12,13g.

FLUCTUATION-DISSIPATION RELATION AND THE… PHYSICAL REVIEW E 71, 065102sRd s2005d

RAPID COMMUNICATIONS

065102-3



modynamic variablem. In the low tapping strength, high
density, and large system limit this can be calculated as

sEdwsed , s1 − edf1 − lnse−1 − 1dg

and thusesmd=m−1f1+Osm−1ln mdg. The density fluctuations
can be written as

kde2lEdw = −
1

L
]mesmd ,

1

Lm2 ,
e2smd

L
,

which should be compared with the fluctuations of the slow
degrees of freedom,Ccst ,td,e2/2L, as given by the dynami-
cal considerations above. Though different in origin they
agree in their functional dependence one. Results with simi-
lar implications have previously been reported in numerical
simulations of compaction modelsf17,21,22g.

Lastly we note that in a steady state the free-length frac-
tion, esGd, is set by the condition that the effective evapora-
tion rate for a typical configuration matches the deposition
rate into gaps opened by diffusion,

exph− ffsGd + rde2sGd/DsGdgj , expf− 1/esGdg.

For the natural choicefsGd=1/kG, andDsGd~G, this gives
esGd,kG, which compared toesmd, as given by the Edwards
picture, givesm,1/kG. Thus, in this setting it is natural to

interpretG as a temperature for the slow degrees of freedom.
In this paper we have presented an instance where an

asymptotically exact calculation gives an extension of the
fluctuation-dissipation theorem in the nonequilibrium regime
of a granular compaction model. The results are very robust
with respect to the different types of driving, with only the
relations1d setting the limits for the possible forms. Through
the fluctuation-dissipation theorem it is possible to define
two different temperatures, one for the fast and one for the
slow degrees of freedom. Due to the difference in the re-
sponse to a perturbation in the tapping strength of the short
time and long time degrees of freedom, these temperatures
have a different sign. We have further treated the model with
the Edwards theory of powders and calculated an exactsim-
plicitd form of the Edwards entropy density. The fluctuations
as calculated within the Edwards’s picture further accurately
describe the long-time dynamically induced fluctuations.
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